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Abstract 

Three statistical testing procedures well-known in the maximum likelihood approach are the 

Wald, likelihood ratio (LR), and score tests. Although well-known, the application of these three 

testing procedures in the logistic regression method to investigate differential item function 

(DIF) has not been rigorously made yet. Employing a variety of simulation conditions, this 

research (a) assessed the three tests’ performance for DIF detection and (b) compared DIF 

detection in different DIF testing modes (targeted vs. general DIF testing). Simulation results 

showed small differences between the three tests and different testing modes. However, targeted 

DIF testing consistently performed better than general DIF testing; the three tests differed more 

in performance in general DIF testing and nonuniform DIF conditions than in targeted DIF 

testing and uniform DIF conditions; and the LR and score tests consistently performed better 

than the Wald test. 

Key words: DIF, Mantel-Haenszel statistic, logistic regression, Wald test, Likelihoood ratio test, 

score test 
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Differential item functioning (DIF) has been a popular research topic in the measurement 

and testing field. Many DIF methods have been investigated and developed, including the 

Mantel-Haenszel (MH) procedure (Holland & Thayer, 1988; Mantel & Haenszel, 1959), the item 

response theory (IRT) parameter chi-square test (Lord, 1977, 1980), the IRT likelihood ratio 

approach (Thissen, Steinberg, & Gerrard, 1986; Thissen, Steinberg, & Wainer, 1988, 1993), and 

the simultaneous item bias test (SIBTEST; Shealy & Stout, 1993). (For reviews of various DIF 

methods and details on their classifications, see Camilli and Shepard, 1994; Dorans and Potenza, 

1994; Holland and Wainer, 1993; and Millsap and Everson, 1993.) Another well-known DIF 

method for dichotomously scored items is the logistic regression DIF procedure introduced by 

Swaminathan and Rogers (1990), who showed that logistic regression can be used to detect 

uniform and nonuniform DIF.1 

The following three models (M0, M1, and M2) are of major interest with respect to the 

logistic regression DIF procedure. Let Y be a response to a given item (0 for incorrect, 1 for 

correct); the expectation of Y (the probability of a correct response to the item) is E(Y) = π = 

1
e

e

η

η+
where η  has the following forms in which T is the test score (total number correct), G is a 

group indicator variable, and (TG) is a product of T and G. 

M0: 0 1Tη β β= +  (1) 

M1: 0 1 2T Gη β β β= + +  (2) 

M2: 0 1 2 3( )T G TGη β β β β= + + +  (3) 

The comparisons of interest in DIF detection are M0 versus M1 (a test of uniform DIF), 

M1 versus M2 (a test of nonuniform DIF),2 and M0 versus M2 (a test of any type of DIF, 

uniform or nonuniform). Swaminathan and Rogers (1990) introduced a chi-square test to 

statistically test DIF by comparing M0 and M2. Although unnamed in their report, this 

comparison is the Wald test. At least two other statistical tests are also readily available for the 

logistic regression procedure: the LR test and the score test (Lagrange multiplier test). The Wald, 

LR, and score tests are asymptotically equivalent (Cox & Hinkley, 1974). Which of the three 

tests is preferable depends on the situation. However, there has been little information or 
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consensus regarding their comparative performance in detecting DIF by the logistic regression 

procedure. 

The LR test was mainly introduced and used for IRT DIF analysis (e.g., Thissen et al., 

1993), and as far as the author knows, only Glas (1998) has used the score test for that purpose. 

Some evidence suggests that the Wald test has weak statistical power. Hauck and Donner (1977) 

showed that in single-parameter testing for the binomial logit model, the Wald statistic decreases 

and its power becomes weaker when the true distance between the null hypothesis and the 

alternative hypothesis becomes large; ultimately its power diminishes to the significance level. 

Comparing the Wald and LR tests, Hauck and Donner recommended the LR test. Vaeth (1985) 

studied the aberrant behavior of the Wald test when it is used for hypothesis testing in 

exponential families. He concluded that the Wald test requires caution when applied to logistic 

regression with many predictors. Fears, Benichou, and Gail (1996) showed that the Wald test 

power was weaker than the usual F test in an application of random-effects analysis of variance. 

Pawitan (2000) explained the Wald test’s lack of power in terms of maximum likelihood 

perspective . The equivalence of the score and MH tests (Day & Byar, 1979) is also relevant to 

this paper. In sum, it is useful to compare the statistical performances of the Wald, LR, and score 

tests with regard to logistic regression DIF application. 

Swaminathan and Rogers’ (1990) general DIF test compares M0 and M2 but this general 

DIF testmay not be as statistically powerful as more-targeted tests for uniform DIF (M0 vs. M1) 

or nonuniform DIF (M1 vs. M2) because one degree of freedom is lost by modeling β3 in M2. 

Sometimes practitioners and researchers use the logistic regression DIF procedure to investigate 

only uniform DIF (e.g., Monahan, McHorney, Stump, & Perkins, 2007), even though the 

procedure is also designed fordetecting nonuniform DIF. Therefore, it would be useful to know 

the extent to which targeted and general DIF testing differ in their power to detect DIF.  

Through systematically varied simulations, this study investigated the DIF-detection 

capabilities of the Wald, LR, and score tests. It also compared different DIF testing modes:: 

generaltesting (M0 vs. M2) and targeted DIF testing (uniform DIF [M0 vs. M1] and nonuniform 

DIF [M1 vs M2]). ). The simulation varied sample size and DIF magnitudes for item response 

data generation. In sum, the research focused on differences in DIF detection (a) between the 

Wald, LR, and score tests and (b) between different DIF testing modes(targeted vs. general). The 

study also investigated which sample sizes ensure adequate statistical power to detect items with 
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medium or large DIF for the three tests and the different testing modes, given the simulation 

conditions in this study. 

Three Statistical Tests for Differential Item Functioning 

The logistic regression is one of the generalized linear models in which statistical testing 

is based on maximum likelihood (ML) estimation. The Wald, LR, and score tests are three 

common ways of testing hypotheses for model parameters or model comparisons in a 

generalized linear model. (For details on these tests, see Cox & Hinkley, 1974; Dobson, 2002; 

and Harrell, 2001.) With regard to these three tests, let β  be a k x 1 vector for the parameters of 

some general model that consists of 1 2( , )β β , where 1β  is a nuisance parameter vector with p 

number of elements and 2β  is a vector for parameters with q number of elements for testing the 

hypothesis Ho: *
2 2=β β , where *

2β  is a vector with hypothesized fixed constants.  

LR Test 

Let ( )L β  be the likelihood of a general model and *
1 2( , )L β β  be the likelihood of a nested 

model under the general model with the restriction of *
2 2=β β . The LR statistic is  

*
1 2( , )2 ln
( )

LLR
L

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦

β β
β , (4) 

where ln represents the natural log, and the likelihood functions, ( )L β  and *
1 2( , )L β β , are 

evaluated at their ML estimates. The LR statistic in Equation 4 follows an asymptotic chi-square 

distribution with degrees of freedom (df) of k – p = q. The LR test requires estimation of both a 

general model and a nested model. 

Wald Test 

Let ( )I β  be a general model’s Fisher information, defined as 

2 ln ( )( ) LE
⎡ ⎤∂

= − ⎢ ⎥′∂ ∂⎣ ⎦

βI β
β β . (5) 
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Let ( )-1I β , the variance-covariance matrix of the maximum likelihood (ML) estimator for the 

general model, be partitioned as follows:  

( )
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

11 12-1

21 22

Σ Σ
I β

Σ Σ , (6) 

where 11Σ  and 22Σ  are the variance-covariance matrices for 1β  and 2β , respectively, and 12Σ  

(or 21Σ ) is the covariance matrix for 1 2( , )β β . The Wald statistic then is 

ˆ ˆ( ) ( )W ′= * -1 *
2 2 22 2 2β -β Σ β -β , (7) 

where 2β̂  is the ML estimate and -1
22Σ  is evaluated using its ML estimates. The Wald statistic has 

an asymptotic chi-square distribution with df = q. The Wald test is simpler than the LR test in 

that it does not require nested or reduced model estimation. Only the ML estimates and their 

variance-covariance matrix from the general model should be fully estimated by ML. Note that 

2β  and 22Σ  are estimated and are adjusted for all other parameters and variance-covariances in 

the general model. For uniform DIF detection, only M1 should be estimated. For nonuniform 

DIF detection and general DIF testing, only M2 should be estimated. Swaminathan and Rogers 

(1990) used this Wald statistic to assess DIF. This procedure is essentially a chi-square test with 

df = 2, a comparison of M0 (reduced or nested model) and M2 (general model). Swaminathan 

and Rogers’ chi-square test formulation is based on a general linear hypothesis test, Ho: =Cβ 0 , 

where C is a contrast matrix to set up the null hypothesis Ho: *
2 2= =β β 0 . For Ho: *

2 2= =β β 0 , 

Equation 7 can be re-expressed using the general linear contrast matrix C as 

1( ) ( ) ( )W −′ ′= -1Cβ CI (β)C Cβ . (8) 

In terms of notation, β  and ( )-1I β  are equivalent to the τ and Σ used by Swaminathan and 

Rogers (C remains the same).  
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Score Test 

The score test measures the difference of the slope of the log-likelihood, ln(L), from zero 

when ln(L) is evaluated using the values of the null hypothesis Ho: *
2 2=β β . Let U be the first 

partial derivative of a general model’s ln(L). This derivative is called a score vector. As before, 

also let -1I  be the general model’s variance-covariance matrix. The score statistic is then 

* * *
1 2 1 2 1 2( , ) ( , ) ( , )S ′= -1U β β I β β U β β , (9) 

where ( )*
1 2U β ,β  and ( , )-1 *

1 2I β β  are a score vector and a variance-covariance matrix evaluated at 

the ML estimates of 1β  with the restriction of Ho: *
2 2=β β . The score statistic follows an 

asymptotic chi-square distribution with df = q. The score test requires only ML estimates of the 

nested model. That is, Equation 9 is evaluated using the nested-model ML estimates and does not 

need full ML estimates of parameters in the general model. The score test may be more 

challenging for practitioners than the Wald and LR tests because not all popular statistical 

packages provide the information needed to compute the score statistic. Basically, the score test 

requires a first and a second derivative of the log-likelihood function with respect to general model 

parameters. In matrix form the score function, the first derivative of ln(L), can be shown as 

ˆ( ) ( )′= −U β X Y Y , (10) 

where X is a design matrix (including 1 for the intercept), Y is a response vector, and Ŷ  is the 

predicted response vector. In matrix form the Fisher information is 

( ) ′=I β X DX , (11) 

where D is a diagonal matrix of weights defined as 

[ (1 )]n ndiag π π= −D , (12) 

where πn (n = 1, 2, 3, …, N) is the predicted probability of the nth person’s correct response to a 

given item. McCullagh and Nelder (1989) gave the detailed derivations of the score function and 

the Fisher information. Because of the simple matrix forms in Equations 10 to 12, the score 
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statistic can easily be calculated in the logistic regression DIF procedure. Pregibon (1982) 

showed an alternative method of calculating the score statistic for logistic regression. This 

method employs the generalized Pearson chi-square residuals from the nested model’s final 

estimates and from the general model’s one-step iteration (starting from 1β̂ ) results. In the 

logistic DIF procedure, the steps and formulas presented above provide an equally simple way of 

calculating the score statistic. 

All computations and simulations were conducted using the statistical language R (The R 

Project for Statistical Computing, 2002). 

Equivalence of Score Test and Mantel-Haenszel Chi-Square Statistic 

Swaminathan and Rogers (1990) stated that testing the null hypothesis β2 = 0 in M1 for 

uniform DIF testing (comparison of M0 and M1) is equivalent to testing the null hypothesis that 

the common odds ratio equals 1 in the MH procedure defined by Holland and Thayer (1988). 

Although targeted DIF (here, uniform DIF) can be tested by the Wald test, it is not equivalent to 

the MH chi-square test statistic. In statistical literature, a derivation exists in which the score-test 

statistic in logistic regression is equivalent to the MH chi-square test statistic (Day & Byar, 

1979). In the following logistic-regression form, Day and Byar modeled a test of independence 

in the J x 2 x 2 tables (m = 1, 2, 3, …, J [number of strata] and in the mth 2 x 2 table, where the 

column represents correct and incorrect responses and the row represents the focal and reference 

groups) as 

0 2logit( )m m Gπ β β= + . (13) 

In doing so, they showed that the score statistic for testing β2 in Equation 13 can be expressed as 

score statistic (with one df) = 

2

3

rm rm
rm

m tm

rm fm tm tm

m tm

N RR
N

N N R W
N

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
, (14) 

where Rrm is the frequency of correct responses in the reference group, Nrm and Nfm are the row 

margins (for the reference and focal groups), Rtm and Wtm are the column margins (for correct 
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and incorrect responses), and Ntm is the total frequency. This score statistic is exactly the same as 

Cochran’s (1954) conditional independence test in the J x 2 x 2 tables. Compared to the MH chi-

square statistic (Mantel & Haenszel, 1959) formulas shown by Dorans and Holland (1993, p. 40, 

Equations 5 and 6), the numerator lacks the continuity correction of -.5, and the denominator (the 

variance of Rrm) lacks finite sampling corrections—that is, it has 3
tmN  rather than 2 ( 1)tm tmN N − . 

But Day and Byar also mentioned that if the likelihood function used in their derivation is 

conditioned on the marginal totals of the separate 2 x 2 tables, a similar derivation removes the 

difference in the denominator between the score statistic and the MH chi-square test. Therefore, 

for uniform DIF testing (M0 vs. M1), the MH procedure has a much closer relationship with the 

score test than (a) the LR test or (b) the Wald test used by Swaminathan and Rogers. Of the three 

tests, the score test may be expected to perform best for uniform DIF because of its equivalence 

to the MH chi-square test, which is the uniformly most powerful unbiased test of constant odds 

ratio (Holland & Thayer, 1988).  

Simulation Method and Design 

The item response function (IRF) used for simulation was the three-parameter logistic 

(3PL) item response model (Birnbaum, 1968), which has the form 

exp[ ( )]( 1 ) (1 )
1 exp[ ( )]

i i
i i i

i i

Da bP Y g g
Da b

θθ
θ
−

= = + −
+ − , (15) 

where ( 1 )iP Y θ=  is the probability of a correct response for the ith item (i = 1, 2, 3, …, I), D is 

1.7, gi is the (pseudo) guessing parameter, ai is the discrimination, and bi is the item difficulty. 

Two sets of simulation data were generated: uniform DIF and nonuniform DIF. The uniform DIF 

data were generated by the difference in item difficulty in the 3PL IRF between the focal and 

reference groups (bF – bR), with all other parameters remaining the same in both groups. The 

nonuniform DIF data were generated by making the discrimination parameter of the focal group 

differ from that of the reference group (aF ≠ aR), with all other item parameters remaining the 

same in both groups.3 Each simulated test had 41 items. Item-difficulty parameters ranged from -

2 to 2, in increments of 0.1. Item-discrimination parameters were randomly drawn from normal 

(1, 0.3). Guessing parameters were randomly drawn from a uniform distribution on [0, 0.35]. 
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When there was no DIF, the studied item had bF = bR = -.5, aF = aR = 1, and gF = gR = 0.2. The 

discrimination parameters ranged from 0.50 to 1.57, with a mean of 0.98 and an SD of 0.28. The 

guessing parameters ranged from 0.01 to 0.35, with a mean of 0.19 and an SD of 0.10. To model 

a typically observed group-ability difference in DIF analysis, person-ability θs were drawn from 

normal (-.5, 1) for the focal group and from normal (0, 1) for the reference group. For uniform 

DIF, bF – bR was systematically manipulated from 0 to 1 in increments of 0.05, producing 21 

conditions. For nonuniform DIF, aF/aR varied from 0.5 to 1.5 in increments of 0.05, producing 

21 conditions.4 The sample sizes of the reference and focal groups were the same. The sample 

size per group ranged from 100 to 500 in increments of 100. 

Zwick (1990) showed that the same 3PL IRF hypothesis (no DIF) is not necessarily 

equivalent to the null hypothesis of no DIF tested in the observed score-matching DIF methods, 

such as the MH procedure with total test-score matching. In this study logistic regression 

procedure for DIF, used the observed total test score as a matching variable. The negative impact 

of using the observed total score as a matching variable, however, may not be serious in this 

studybecause the number of items (41) was relatively large under the simulated group difference 

of 0.5 (half an SD). Spray and Miller (1992) reported that using observed score as a matching 

variable in the MH method did not lead to practically serious impact on their DIF investigation 

when the test had a relatively large number of items (40 items in their study).  

For uniform and nonuniform DIF data, targeted DIF testing (M0 vs. M1) and general DIF 

testing (M0 vs. M2) were conducted using the Wald, LR, and score tests. The number of data 

simulation conditions was 210 (2 x 21 x 5): each data set (uniform and nonuniform) had 21 

levels and 5 sample sizes (100, 200, 300, 400, and 500). For each of the 210 conditions, six 

statistical tests (Wald, LR, and score tests, each in a targeted and a general DIF testing mode) 

were applied with 1,000 replications. The nominal alpha level of 0.05 was used for statistical 

significance. 

Results 

For fair comparisons of different tests’ detection rates or statistical power, the tests’ false 

positive rate (i.e.,Type I errorrates) should be at least approximately the same, because higher 

levels of Type I errors could mean that a test’s statistical power is rather liberal, showing higher 

statistical power. The Type I error rates were examined for the Wald, LR, and score tests using 
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the results fromthe bF – bR = 0 and aF = aR = 1 conditions. On average, the three tests’ Type I 

error occurred in 5–6% of the replications across different testing modes, DIF types, and sample 

sizes. In any given condition, the smallest observed difference in Type I error rate was 0; the 

largest observed difference was a 1.2% difference between the LR and Wald tests with 

nonuniform DIF, a general DIF testing approach (M0 vs. M2), and N = 300. Therefore, it was 

concluded that the comparisons adequately represented the three tests’ DIF detection rates. Table 

1 summarizes the Type I error rates of the Wald, LR, and score tests. (Anyone desiring details of 

all results under all conditions may request them from the author.) 

Table 1 

Summary of Type I Error Rates for the Wald, Likelihood Ratio (LR), and Score Tests 

 Test 

Summary statistics Wald LR Score 

Average 0.055 0.059 0.058 

SD 0.011 0.011 0.011 

Minimum 0.038 0.039 0.039 

Maximum 0.073 0.077 0.074 

Note. All values were obtained by calculating averages across different sample sizes (5 levels), 

DIF magnitudes (21 levels), DIF types (uniform and nonuniform), and DIF testing modes 

(targeted and general). Each of 420 conditions (210 simulation data conditions ×  2 DIF testing 

modes) had 1,000 replications. 

Figures 1 and 2 depict the general rejection-rate results. Although all x-axis values in the 

figures are discrete (21 points), they were expressed with lines for simple graphical depiction. 

For uniform DIF (Figure 1), the DIF detection rate increases as the sample size increases 

across different test types (Wald, LR, and score) and different DIF testing modes (targeted or 

general DIF). As the difference in item difficulty (bF – bR) increases, so does the detection rate, 

nearing a 100% rejection rate for all tests and sample sizes when bF – bR = 1. In general for  
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Figure 1. Overall rejection rates for uniform differential item functioning (DIF). 

Note. Wald = the Wald test, LR = the likelihood-ratio test, Score = the score test, bf – br = bF – 

bR, and N = sample size per group. 
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Figure 2. Overall rejection rates for nonuniform differential item functioning (DIF). 

Note. Wald = the Wald test, LR = the likelihood-ratio test, Score = the score test, af/ar = aF/aR, 

and N = sample size per group. 



 

12 

 

nonuniform DIF (Figure 2), increasing the discrimination difference (aF/aR > 1 or aF/aR < 1) 

from no DIF (aF = aR = 1) brought an increase in rejection rate, but the shape of the rejection-rate 

pattern was far from a symmetrical U. The DIF detection rate was much higher when aF/aR < 1 

(the focal-group IRF was flatter than the reference-group IRF) than when aF/aR >1 (the focal-

group IRF was steeper than the reference-group IRF). The same discrimination difference did not 

shape the DIF detection rate symmetrically, indicating that the same differences between aF and 

aR do not cause the same IRF differences.5 Figure 3 illustrates the same slope differences’ 

nonsymmetrical impact on IRF differences. In the figure, aF/aR = 0.5 results in a larger absolute 

difference in area between IRFs than aF/aR = 1.5. 

Comparisons of Wald, Likelihood Ratio, and Score Tests 

Using the Wald test’s rejection rates as baseline, I compared the rejection rates of the Wald, 

LR, and score tests. Figures 4–7 show the difference plots for uniform and nonuniform DIF. 

  (a) aF/aR = 1.5  (b) aF/aR = 0.5 
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Figure 3. Item response function (IRF) differences for aF/aR = 1.5 and 0.5.  

Note. Dotted vertical lines represent item-difficulty points. Solid IRF lines have aR = 1. 
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Figure 4. Differences in the three tests’ rejection rates for detection of uniform differential 

item functioning (DIF) by targeted DIF testing. 

Note. Wald = the Wald test, LR = the likelihood-ratio test, Score = the score test, N = sample size 

per group, and bf – br = bF – bR. The plots show differences in the three tests’ rejection rates 

when the Wald test is the baseline. 
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Figure 5. Differences in the three tests’ rejection rates for detection of uniform differential 

item functioning (DIF) by general DIF testing. 

Note. Wald = the Wald test, LR = the likelihood-ratio test, Score = the score test, and bf – br = bF 

– bR. The plots show differences in the three tests’ rejection rates when the Wald test is the 

baseline. 
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Figure 6. Differences in the three tests’ rejection rates for detection of nonuniform 

differential item functioning (DIF) by targeted DIF testing. 

Note. Wald = the Wald test, LR = the likelihood-ratio test, Score = the score test, and af/ar = 

aF/aR. The plots show differences in the three tests’ rejection rates when the Wald test is the 

baseline. 
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Figure 7. Differences in the three tests’ rejection rates for detection of nonuniform 

differential item functioning (DIF) by general DIF testing. 

Note. Wald = the Wald test, LR = the likelihood-ratio test, Score = the score test, and af/ar = 

aF/aR. The plots show differences in the three tests’ rejection rates when the Wald test is the 

baseline. 
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Overall, the three tests behaved very similarly, and the differences in their rejection rates were 

small. The largest rejection-rate differences between the three tests occurred in about 3% of the 

replications for uniform DIF (Figures 4 and 5) and about 4.5% of those for nonuniform DIF 

(Figures 6 and 7). The differences decreased as both sample size and DIF increased. General DIF 

testing (M0 vs. M2) tended to create more differences than targeted testing. Nonuniform DIF 

showed more differences than uniform DIF. In general, the rejection rates of the score and LR 

tests were higher than those of the Wald test. For uniform DIF, the score test had the highest 

detection rate, the LR test the second highest, and the Wald test the lowest. For nonuniform DIF, 

the LR test showed the highest detection rate across different sample sizes and DIF sizes, the 

score test showed the second highest detection rate, and the Wald test showed the lowest. For 

both uniform and nonuniform DIF, the differences between the LR and score tests were smaller 

than the differences between the Wald test and either the LR or score test. Table 2 summarizes 

the average differences in rejection rates over all DIF magnitudes. 

For targeted DIF testing, the average differences in rejection rate were very small. On 

average, they occurred in only 1.5% or less of the replications. For general DIF testing, 

differences occurred, on average, in up to 2.1% of the replications, but the same consistent 

patterns mentioned for Figures 4 through 7 can still be observed in Table 2. 

Comparison of Targeted and General Differential-Item-Functioning Testing 

Tables 3 and 4 show the differences in DIF detection rates between targeted and general 

DIF testing as percentages. 

In Tables 3 and 4, positive numbers indicate a higher DIF detection rate for targeted DIF 

testing; negative numbers indicate a higher detection rate for general DIF testing. As the tables 

show, targeted DIF testing had a higher detection rate than general DIF testing, regardless of the 

test used (Wald, LR, or score). The row and column margins, which are averages, confirm that 

targeted DIF testing showed better performance than general DIF testing for detecting DIF. 

Across small and large sample sizes, targeted DIF testing showed detection rates 1–5% higher 

for uniform DIF and 1–4% higher for nonuniform DIF. Across different DIF magnitudes, 

targeted DIF testing showed detection rates 1–7% higher for uniform DIF and 1–8% higher for 

nonuniform DIF. 
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On average, for uniform DIF, the difference between targeted and general DIF testing 

decreased and became negligible as the sample size and bF – bR increased (e.g., N = 500 with bF 

– bR ≥ 0.45). For nonuniform DIF, larger sample sizes increased the difference between targeted 

and general DIF testing, especially when the focal-group slope was lower than the reference-

group slope (aF/aR < 1). 

Table 2 

Average Differences in Rejection Rates Between the Wald, Likelihood Ratio (LR), 

and Score Tests 

  Uniform DIF 

 M0 vs. M1  M0 vs. M2 

N LR-Wald Score-Wald  LR-Wald Score-Wald 

100 0.002 0.004  0.016 0.016 
200 0.000 0.001  0.005 0.006 
300 0.000 0.001  0.003 0.004 
400 0.000 0.000  0.001 0.002 
500 0.000 0.000  0.001 0.002 

      
  Nonuniform DIF 

 M1 vs. M2  M0 vs. M2 

N LR-Wald Score-Wald  LR-Wald Score-Wald 

100 0.015 0.010  0.021 0.014 
200 0.009 0.005  0.013 0.009 
300 0.006 0.004  0.008 0.006 
400 0.004 0.003  0.007 0.005 
500 0.003 0.002  0.006 0.004 

Note. The values were obtained by calculating averages over different DIF magnitudes. 
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Table 3 

Percent Differences in Rejection Rates for Uniform Differential Item Functioning (DIF) between Targeted DIF and General DIF 

  N = 100 N = 200 N = 300 N = 400 N = 500   

bF – bR Wald LR Score Wald LR Score Wald LR Score Wald LR Score Wald LR Score Average

0.00 2 1 1 0 -1 -1 0 0 0 -1 -2 -1 0 0 0 0 
0.05 2 1 1 1 1 1 2 1 1 1 1 1 0 0 0 1 
0.10 2 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 
0.15 2 1 1 2 1 2 1 0 0 1 1 1 4 4 4 2 
0.20 4 3 3 4 3 3 4 4 3 3 3 3 5 5 5 4 
0.25 4 1 2 4 3 3 4 3 3 6 6 6 4 4 4 4 
0.30 4 2 3 7 6 6 5 4 4 5 4 4 6 6 5 5 
0.35 7 6 6 10 9 9 7 7 7 5 5 4 6 6 6 7 
0.40 8 6 7 7 5 6 3 2 2 5 5 5 5 5 4 5 
0.45 9 7 7 6 6 6 5 5 5 4 4 4 1 1 1 5 
0.50 8 6 6 8 6 7 4 4 3 1 1 1 0 0 0 4 
0.55 9 7 7 7 6 5 2 2 2 0 0 0 0 0 0 3 
0.60 9 7 7 3 3 3 2 2 2 0 0 0 0 0 0 3 
0.65 9 7 7 4 3 3 1 1 1 0 0 0 0 0 0 2 
0.70 9 7 7 2 2 2 1 1 1 0 0 0 0 0 0 2 
0.75 6 4 5 1 1 1 0 0 0 0 0 0 0 0 0 1 
0.80 6 5 5 0 0 0 0 0 0 0 0 0 0 0 0 1 
0.85 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 1 
0.90 4 3 3 1 1 1 0 0 0 0 0 0 0 0 0 1 
0.95 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 
1.00 4 3 3 0 0 0 0 0 0 0 0 0 0 0 0 1 
Average 5 4 4 3 3 3 2 2 2 2 1 1 2 2 1   

Note. Wald = the Wald test, LR = the likelihood-ratio test, and Score = the score test. The values were calculated by 100 ×  (targeted 

DIF rejection rate – general DIF rejection rate) and rounded to an integer. 
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Table 4 

Percent Differences in Rejection Rates for Nonuniform Differential Item Functioning (DIF) between Targeted DIF and General 

DIF 

\ N = 100 N = 200 N = 300 N = 400 N = 500   

aF/aR Wald LR Score Wald LR Score Wald LR Score Wald LR Score Wald LR Score Average

1.00 0 0 0 -1 -1 -1 0 0 0 0 0 1 1 1 1 0 
1.05 1 0 0 0 -1 -1 0 -1 0 -1 -1 -1 0 0 0 -1 
0.95 0 0 0 2 2 2 1 1 1 1 1 1 1 2 2 1 
1.10 0 -1 -1 1 1 1 1 0 0 -1 -1 -1 -1 -1 0 0 
0.90 1 0 1 0 0 0 1 1 1 1 1 1 2 1 2 1 
1.15 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 0 
0.85 0 0 0 3 4 3 2 2 2 4 4 4 3 2 2 2 
1.20 -1 -1 -1 -1 -1 -1 0 0 0 2 2 2 -1 -1 -1 0 
1.25 1 0 0 0 0 0 1 1 1 2 2 1 2 1 1 1 
0.80 2 2 2 2 1 1 3 2 2 5 4 4 7 7 7 3 
1.30 2 2 1 0 0 0 2 1 2 1 0 0 3 3 3 1 
0.75 2 1 1 2 2 1 4 4 4 5 5 5 5 5 5 3 
1.35 1 1 1 0 0 0 3 3 3 3 2 3 5 5 5 2 
1.40 1 1 1 2 1 2 3 2 2 3 3 3 5 5 5 3 
0.70 3 2 2 5 6 5 9 8 8 9 8 8 9 8 9 7 
1.45 3 2 2 4 3 3 2 2 2 5 5 5 6 6 6 4 
1.50 2 2 2 2 2 2 4 4 4 6 5 6 5 5 5 4 
0.65 5 4 4 8 6 6 5 5 4 9 9 9 8 8 8 7 
0.60 5 5 5 8 6 6 7 6 6 8 8 8 7 7 7 7 
0.55 7 6 6 8 6 6 7 7 7 8 7 7 7 7 6 7 
0.50 9 7 7 11 10 10 9 9 9 8 7 7 5 5 5 8 
Average 2 1 2 3 2 2 3 3 3 4 3 4 4 4 4   

Note. Wald = the Wald test, LR = the likelihood-ratio test, and Score = the score test. The values were calculated by 100 ×  (targeted 

DIF rejection rate – general DIF rejection rate) and rounded to an integer. 
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Differential-Item-Functioning Detection Rate and Sample Size 

Dorans and Holland (1993) used standardized p differences of 0.05 and 0.10 to describe 

items of negligible DIF, intermediate DIF (which warrants inspection), and large DIF (which is 

unusual and therefore warrants careful examination). For uniform DIF, I converted the item- 

difficulty difference, bF – bR, to the probability metric via the T1 statistic (see Wainer, 1993; p. 

127, Equation 1), which is the average IRF difference weighted by the focal-group ability density 

function, 

( ) ( )( )1 1 1 ( )R i F i FT P Y P Y dGθ θ θ
∞

−∞
= = − =∫ , 

where GF(θ) is the focal-group distribution function (Wainer used the notation of focal-group 

IRF minus reference-group IRF). T1 has the same form as the DIF estimator for the SIBTEST 

(Shealy & Stout, 1993), and it becomes the standardized p-difference index when the matching 

variable is an observed discrete variable. The bF – bR values that most closely approximated 0.05 

and 0.10 for uniform DIF were 0.20 (T1 = 0.045), 0.25 (T1 = 0.056), and 0.45 (T1 = 0.100). For 

nonuniform DIF, different item slope parameters (aF ≠ aR)were converted to the probability 

metric, using an unsigned version of T1 (here called UT1), 

( ) ( )1 1 1 ( )R i F i FUT P Y P Y dGθ θ θ
∞

−∞
= = − =∫ . 

T1 and UT1 were evaluated using a numerical approximation with discrete θ points on [-5,5] in 

increments of .05. The aF/aR values closest to 0.05 and 0.10 were 1.50 (UT1 = 0.048), 0.65 (UT1 

= 0.052), and 0.50 (UT1 = 0.080). UT1 differs from T1 in that it uses the absolute IRF difference 

rather than just the IRF difference. However, as an unsigned measure, UT1 can still be 

interpreted as the expected score difference at the item level as an unsigned measure. Table 5 

shows the selected simulation conditions and the rejection rates whose T1 and UT1 values were 

closest to 0.05 and 0.10. 
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Table 5 

Differential Item Functioning (DIF) Detection Rates and Sample Size for Intermediate and Large DIF 

Uniform DIF                                
Targeted DIF (M0 vs. M1) N = 100 N = 200 N = 300 N = 400  N = 500 
bF – bR T1 Wald LR Score Wald LR Score Wald LR Score Wald LR Score  Wald LR Score 
0.20 0.045 0.124 0.127 0.127 0.191 0.191 0.193 0.261 0.261 0.264 0.350 0.350 0.353  0.435 0.435 0.436 
0.25 0.056 0.170 0.170 0.174 0.296 0.297 0.296 0.387 0.387 0.392 0.464 0.464 0.464  0.550 0.550 0.553 
0.45 0.100 0.386 0.388 0.391 0.649 0.650 0.651 0.796 0.796 0.796 0.903 0.902 0.903  0.951 0.951 0.951 
Uniform DIF                 
General DIF (M0 vs. M2)                 
bF – bR T1                 
0.20 0.045 0.086 0.101 0.099 0.154 0.163 0.166 0.222 0.226 0.230 0.317 0.320 0.326  0.383 0.388 0.389 
0.25 0.056 0.132 0.157 0.154 0.254 0.262 0.262 0.352 0.361 0.363 0.399 0.404 0.407  0.507 0.507 0.511 
0.45 0.100 0.298 0.320 0.320 0.586 0.592 0.596 0.748 0.748 0.751 0.860 0.861 0.863  0.943 0.943 0.944 
Nonuniform DIF                 
Targeted DIF (M1 vs. M2)                 
aF/aR UT1                 
1.50 0.048 0.078 0.093 0.089 0.135 0.141 0.140 0.167 0.175 0.173 0.213 0.216 0.215  0.249 0.253 0.253 
0.65 0.052 0.140 0.159 0.156 0.267 0.276 0.273 0.348 0.361 0.356 0.486 0.496 0.495  0.582 0.584 0.584 
0.50 0.080 0.289 0.315 0.305 0.521 0.543 0.534 0.701 0.710 0.707 0.830 0.836 0.834  0.891 0.894 0.893 
Nonuniform DIF                 
General DIF (M0 vs. M2)                 
aF/aR UT1                 
1.50 0.048 0.058 0.078 0.070 0.112 0.123 0.120 0.130 0.138 0.137 0.151 0.161 0.156  0.194 0.200 0.200 
0.65 0.052 0.092 0.116 0.111 0.192 0.213 0.211 0.298 0.315 0.311 0.392 0.405 0.406  0.498 0.507 0.502 
0.50 0.080 0.201 0.246 0.230 0.415 0.443 0.439 0.611 0.620 0.620 0.753 0.762 0.762  0.838 0.843 0.841 
Note. Wald = the Wald test, LR = the likelihood-ratio test, and Score = the score test. T1 and UT1 values were rounded up to the third 

decimal place. 



 

23 

 

For intermediate DIF items (T1 ≈ 0.5; UT1 ≈ 0.5), the detection rates of targeted 

DIF testing ranged from about 8% to about 58% of the replications as the sample size 

increased from 100 to 500 per group; the detection rates of general DIF testing tended to 

be lower, ranging from about 6% to about 51% of the replications. When an item had 

relatively large DIF (T1 = 0.1 or UT1 = 0.08), the detection rates across different sample 

sizes were 29–95% of the replications for targeted DIF testing and 20–94% of the 

replications for general DIF testing. 

With a sample size of 200 per group, the best detection rate is about 30% for an 

intermediate uniform DIF item, about 65% for a large uniform DIF item, and about 54% 

for a nonuniform DIF item with a UT1 of 0.8. When a DIF detection rate of more than 

70% is desired for a large DIF item, a sample size of at least 300 per group appears to be 

a good choice with any test (Wald, LR, or score) and any DIF testing mode (targeted or 

general). Under this study’s item parameters, test length and group-ability conditions, if a 

sample size of 500 per group is used, a medium DIF item will be detected at least 51% of 

the time, and a large uniform DIF item will be detected at least 94% of the time, whatever 

test and DIF testing mode are used. 

Summary and Discussion 

At least three statistical hypothesis tests can be used in logistic regression 

applications: the Wald, LR, and score tests. All three have asymptotic chi-square 

sampling distributions, but they can yield different results with finite samples. 

Swaminathan and Rogers (1990) introduced use of the Wald test. Although well-known 

hypothesis tests, the LR test and especially the score tests have not been popular, and 

their performance in logistic-regression DIF detection has not been rigorously compared. 

In addition, it does not seem to be well-recognized that the score-test statistic is 

equivalent to the MH chi-square test (Day & Byar, 1979). The study results showed that 

overall, the three tests behaved very similarly; differences in DIF detection rates were 

small. Especially with targeted uniform DIF testing, the three tests performed virtually 

the same. When the sample size and DIF magnitude became large, the differences 

between the tests became negligible. 
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A few consistent patterns, however, should be addressed. The tests’ DIF-detection 

rates differed more with general DIF testing than with targeted DIF testing and were 

lower with general DIF testing, regardless of which test was used. Also, DIF-detection 

rates differed more with nonuniform DIF than with uniform DIF. The LR and score tests 

had better DIF-detection rates than the Wald test across different test modes (targeted vs. 

general), DIF types, and sample sizes. The score test was the best for detecting uniform 

DIF, and the LR test was the best for detecting nonuniform DIF. The author recommends 

either the LR or score test whenever either is available, especially when the sample size is 

not large. The slightly but consistently higher DIF detection rates of the LR and score 

tests appear to be in accordance with previous findings on the Wald test’s statistical 

power (e.g., Fears, Benichou, & Gail, 1996; Hauck & Donner, 1977; Pawitan, 2000). 

Targeted DIF testing performed better than general DIF testing. To make full use 

of logistic regression for any type of DIF detection, practitioners can take the following 

steps (presented as a flowchart in Figure 8): 

1. Conduct targeted DIF testing for nonuniform DIF (M1 vs. M2). 

2. If the result of Step 1 is not statistically significant, conduct targeted DIF testing 

for uniform DIF (M0 vs. M1). If the result of Step 1 is statistically significant, 

stop the statistical DIF testing and conclude statistically significant nonuniform 

DIF.  

3. If you conducted targeted DIF testing for uniform DIF and the result was 

statistically significant, conclude statistically significant uniform DIF.. If you 

conducted targeted DIF testing for uniform DIF and the result was not statistically 

significant, stop the statistical DIF testing and conclude noDIF..  
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Figure 8. Strategy for detection of differential item functioning (DIF) with targeted 

DIF testing. 

In practice, detecting large DIF is generally of the utmost importance. The current 

study findings seem to suggest that a sample size of 100 per group is too small to detect 

large DIF frequently (see Table 5 for the detection rate when T1 = 1.0). Given the 

simulation conditions used in this study, a sample size of at least 200 or higher appear to 

be recommended to detect large (uniform or nonuniform) DIF at least half or more than 

half of the time. With a minimum of 300 per group, this study shows that an item with 

large DIF would be detected at least 60% of the time, whatever testing mode or test was 

used. For a sample of 300 per group, the uniform DIF detection rate for an item with 

large DIF went up to 75% in general DIF testing and 80% in targeted DIF testing (see 

Table 5). Note also that differences in DIF detection rates between the three tests become 

more inconsequential with a sample of 300 per group than with samples of 100 or 200 per 

group (see Figures 5 and 7). 



 

26 

 

References 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s 

ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test 

scores (pp. 397–479). Reading, MA: Addison-Wesley. 

Bolt, D. M., & Gierl, M. J. (2006). Testing features of graphical DIF: application of a 

regression correction to three nonparametric statistical tests. Journal of 

Educational Measurement, 43, 313-333.  

Camilli, G., & Shepard, L. A. (1994). Methods for identifying biased test items. Thousand 

Oaks, CA: Sage. 

Cochran, W. G. (1954). Some methods of strengthening the common 2χ tests. 

Biometrics, 10, 417–451. 

Cox. D. R., & Hinkley, D. V. (1974). Theoretical statistics. New York: Chapman & 

Hall/CRC. 

Day, N. E., & Byar, D. P. (1979). Testing hypotheses in case-control studies: 

Equivalence of Mantel-Haenszel statistics and logit score tests. Biometrics, 35, 

623–630. 

Dobson, A. J. (2002). An introduction to generalized linear models (2nd ed.). New York: 

Chapman & Hall/CRC. 

Dorans, N., & Holland, P. W. (1993). DIF detection and description: Mantel-Haenszel 

and standardization. In P. W. Holland & H. Wainer (Eds.), Differential item 

functioning (pp. 35–66). Hillsdale, NJ: Erlbaum. 

Dorans, N., & Potenza, M. (1994). Equity assessment for polytomously scored items: A 

taxonomy of procedures for assessing differential item functioning (ETS Research 

Rep. No. RR-94-99). Princeton, NJ: ETS. 

Fears, T. R., Benichou, J., & Gail, M. H. (1996). A reminder of the fallibility of the Wald 

statistic. The American Statistician, 50, 226–227. 

Glas, C. A. W. (1998). Detection of differential item functioning using Lagrange 

multiplier tests. Statistica Sinica, 8, 647–667. 

Harrell, F. E., Jr. (2001). Regression modeling strategies: With applications to linear 

models, logistics regression, and survival analysis. New York: Springer. 



 

27 

 

Hauck, W. W., & Donner, A. (1977). Wald’s test as applied to hypotheses in logit 

analysis. Journal of the American Statistical Association, 72, 851–853. 

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-

Haenszel procedure. In H. Wainer & H. I. Braun (Eds.), Test validity (pp. 129–

145). Hillsdale, NJ: Erlbaum. 

Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ: 

Erlbaum. 

Lord, F. M. (1977). A study of item bias, using item characteristic curve theory. In Y. H. 

Poortinga (Ed.), Basic problems in cross-cultural psychology (pp. 19–29). 

Amsterdam: Swets & Zitlinger. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. 

Hillsdale, NJ: Erlbaum. 

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from 

retrospective studies of disease. Journal of National Cancer Institution, 22, 719–

768. 

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). New York: 

Chapman & Hall. 

Millsap, R., & Everson, H. (1993). Methodology review: Statistical approaches for 

assessing measurement bias. Applied Psychological Measurement, 17, 297–334. 

Monahan, P. O., McHorney, C. A., Stump, T. E., & Perkins, A. J. (2007). Odds ratio, 

delta, ETS classification, and standardization measures of DIF magnitude for 

binary logistic regression. Journal of Educational and Behavioral Statistics, 32, 

92–109. 

Pawitan, Y. (2000). A reminder of the fallibility of the Wald statistic: Likelihood 

explanation. The American Statistician, 54, 54–56. 

Pregibon, D. (1982). Score tests in GLIM with applications. In R. Gilchrist (Ed.), Lecture 

notes in statistics: No. 14. GLIM 82: Proceedings of the international conference 

on generalized linear models (pp. 87–97). New York: Springer. 

The R project for statistical computing. (2002). Retrieved November 5, 2008, from 

http://www.r-project.org. 



 

28 

 

Raju, N. S. (1988). The area between two item characteristic curves. Psychometrika, 53, 

495–502. 

Raju, N. S. (1990). Determining the significance of estimated signed and unsigned areas 

between two item response functions. Applied Psychological Measurement, 14, 

197–207. 

Shealy, R., & Stout, W. F. (1993). A model-based standardization approach that separates 

true bias/DIF from group differences and detects test bias/DIF as well as item 

bias/DIF. Psychometrika, 58, 159–194. 

Spray, J. A., & Miller, T. R. (1992). Performance of the Mantel-Haenszel statistic and the 

standardized difference in proportions correct when population ability 

distributions are incongruent (ACT Research Rep. Series No. 92-1). Iowa City, 

IA: ACT. 

Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using 

logistic regression procedures. Journal of Educational Measurement, 27, 361–

370. 

Thissen, D., Steinberg, L., & Gerrard, M. (1986). Beyond group mean differences: The 

concept of item bias. Psychological Bulletin, 99, 118–128. 

Thissen, D., Steinberg, L., & Wainer, H. (1988). Use of item response theory in the study 

of group differences in trace lines. In H. Winter & H. Braun (Eds.), Test validity 

(pp. 147–169). Hillsdale, NJ: Erlbaum. 

Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item 

functioning using the parameters of item response models. In P. W. Holland & H. 

Wainer (Eds.), Differential item functioning (pp. 67–113). Hillsdale, NJ: Erlbaum. 

Vaeth, M. (1985). On the use of Wald’s test in exponential families. International 

Statistical Review, 53, 199–214. 

Wainer, H. (1993). Model-based standardized measurement of an item’s differential 

impact. In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 

123–135). Hillsdale, NJ: Erlbaum. 

Zwick, R. (1990). When do item response function and Mantel-Haenszel definitions of 

differential item functioning coincide? Journal of Educational Statistics, 15, 185–

197. 



 

29 

 

Notes 
1 In this research, uniform DIF is defined as parallel three-parameter logistic (3PL) model 

item response function (IRF) differences (the same slope and guessing parameters but 

different difficulty parameters); nonuniform DIF is defined as nonparallel (crossing) 

3PL model IRF differences (the same difficulty and guessing parameters but different 

slope parameters). 

2 The result of targeted DIF testing (M0 vs. M1 or M1 vs. M2) does not of itself indicate 

that there is no statistically significant DIF. If the comparison of M1 and M2 is not 

statistically significant, there may nevertheless be statistically significant uniform DIF 

(by comparing M0 and M1). Also, even if the comparison of M0 and M1 does not 

indicate statistically significant uniform DIF, there may be statistically significant 

nonuniform DIF (by comparing M1 and M2). Therefore, M0-versus-M1 comparisons 

and M1-versus-M2 comparisons are referred to as targeted. They require an a priori 

hypothesis—assumption of uniform DIF or nonuniform DIF—to allow a conclusion of 

no DIF. 

3 Although nonuniform DIF due to different discriminations may not occur as often as 

uniform DIF, this study used the different discrimination as an approximation of one 

possible crossing IRF DIF scenario. Bolt and Gierl (2006) mentioned that translation 

DIF studies have shown a wide variety of DIF forms, including nonuniform (crossing) 

DIF. Also, their real data analysis for DIF showed some examples of crossing DIF 

items caused by discrimination differences. 

4 Data were generated by the 3PL model, which has a nonzero lower asymptote (the mean 

guessing-parameter value was 0.19, and the studied-item guessing-parameter value 

was 0.2). Note, however, that the lower asymptote for the logistic regression is zero. 

5 Although the differences from no DIF (aF = aR = 1) are the same for the two largest 

discrimination differences (aF/aR = 0.5 and 1.5), the IRFs were crossed such that aF/aR 

= 0.5 formed a larger IRF area difference than aF/aR = 1.5. The unsigned areas 

between IRFs calculated by Raju’s (1988, 1990) formula gave 0.65 for aF/aR = 0.5 and 

0.22 for aF/aR =1.5. 




